Chromatographic Analysis of Vanilla Extracts

Vanessa R. Kinton & Janet M. Scalese

Alcohol and Tobacco Tax and Trade Bureau (TTB), Nonbeverage Products Laboratory (NPL), U. S. Department of the Treasury, National Laboratory Center, Beltsville, MD 20705

Abstract

Vanilla extracts are made by percolating or macerating chopped vanilla beans in ethanol and water. The Food and Drug Administration (FDA) has specific regulations for manufacturing vanilla extracts. If a company follows these regulations, the product is said to be a "Standard of Identity "product.

The Department of the Treasury's Alcohol and Tobacco Tax and Trade Bureau (TTB) is responsible for regulating the use of ethanol in products manufactured in the United States. One area that falls within TTB's jurisdiction is the regulation of nonbeverage products, which includes vanilla extracts. When a domestic manufacturer produces a vanilla extract according to FDA regulations the distilled spirits used in manufacturing are eligible for drawback of most of the Federal excise tax paid on those

A series of vanilla extracts were manufactured in the TTB Nonbeverage Products Laboratory according to the FDA regulations. The beans used in the extracts were grown in various countries. Once manufactured, the extracts were analyzed using gas chromatography and mass spectrometry. Different sampling techniques were also investigated: headspace, solid-phase microextraction and liquid injections.

The objectives of this study were to identify predominant components and to determine if chemometric models could be created so that they group the extracts by country of origin. Chemometric models created with headspace sampling showed that extracts cluster according to the year they were prepared. The amount of vanillin present in the extracts is also reported for each

Extract preparation

Standard of identity for vanilla extracts requires one unit of vanilla beans (13.35 oz at 25% moisture or 10.0125 oz dry weight) per gallon. These extracts must have a minimum of 35% alcohol1. Twelve vanilla bean types were obtained from industry members and the percentage of moisture was measured by weighing a bean before and after drying overnight at 100 °C (Table 1). The amount needed for a two-fold extract was measured, beans were cut (Figure 1) and were extracted with a solution of 45% ethanol/water for 8 hours at 100 °F using the apparatus shown in Figure 2.

Figure 2 Extraction apparatus

Table 1 Description of vanilla extracts used in this study

Extract #	Country of Origin	% Moisture	Fold	Year prepared
1	Indonesia	12	2	2010
2	Bourbon*	17	2	2010
3	Madagascar	14	2	2010
4	Madagascar	13	2	2010
5	Madagascar	10	2	2010
6	Bourbon*	23	2	2010
7	PNG**	28	2	2010
8	Indonesia	13	1	1998
9	Tahitian	10	1	1998
10	Indonesia	12	1	1998
11	Madagascar	15	1	1998
12	Indonesia	12	2	2010
*Cupplioro	of boons did not ide	-4:6	foriai	- 4 D

**PNG= Papua New Guinea

Once extracts were prepared, they were filtered and stored in amber bottles. Aliquots of these extracts were analyzed according to conditions described in Table 2. Examples of the chromatograms obtained for extract # 5 with each sampling technique are shown in Figure 3. Library search reports were obtained using NIST library (version 2.0, 2005) and summaries for all 12 extracts are shown in Tables 3-5 with the area percentage (Area pct) for compounds detected with match qualities above 80

Table 2 Experimental conditions

	Headspace (HS)	Liquid (Liq)	Solid Phase Microextraction (SPME)			
Gas chromatograph	Agilent 6890	Aglient 6890	Agilent 5890			
Autosampler Gerstel MPS 2		Geratel MPS 2	Geratel MPS 2			
Sample preparation	1000 µl straight	1:10 with Methanol + Internal Standard	100 uL straight			
Autosampler mode	Headspace (HS)	Liquid (Liq)	SPME			
Preparation before injection	110 -C for 15 min	none	30 min extraction with PA fiber			
Injection volume	1500 pt.	1 pt.	N/A			
Inlet	250 °C; 5:1 split	250 °C; 5:1 split	250 °C; splitless			
Oven profile	40 °C 1; 10 °Cimin 220 °C; 10.0'	40 °C 1'; 10 °C/min 250 °C; 10.0'	40 °C 2; 3 °C/min 250 °C; 10.0'			
Column	HPS	Phenomen ZB-WAXplus	Aglient, HP-Innovex			
Column dimensions	30 m x 0.25 mm x 0.25 um	30 m x 0.25 mm x 0.25 um	30 m x 0.25 mm x 0.25 um			
MSD Detector	Agilent MSD 5975 Inert	Agilent MSD 5975 Inert	Aglent MSD 5973			
Solvent delay-(MSD)	4.67 min	4.65 min	4.60 min			
Scan-(MSD)	30,300 servi	30,300 amu	40,350 arres			

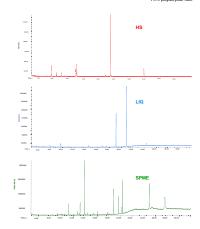
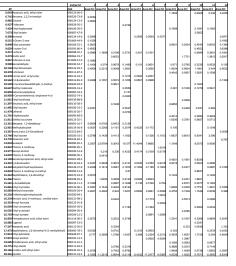


Figure 3 Total ion chromatograms (TIC) for extract #5 using different sampling techniques


1. Code of Federal Regulations (2007). Title 21 Part 169. U.S. Government Printing Office, Washington, DC 20402-001.

2. Sostaric, T., Boyce, M. C. and Spickett, E. E. (2000) J. Agric. Chem. 48, 5807.

Table 3 Library search reports for the extracts using headspace sampling

	Extract #:	1	2	3	- 4	5	- 6	. 7	2	9	20	- 11	1
RT	CAS	Area Pct	Area Pa	Area Pct	Area Po	Area Pc	Area Pct	Area Pct	Area Pc	Area Pct	Area Pct	Area Pct	Area Pc
3.735 Acetic acid	000064-19-7	2.8811	15.812	24.2253	6.9308	10.488	6.9235	43.6916	7.2985	17.1476	12.1285		9.058
4.204 1-Butanol, 3-methyl-	000123-51-3	2.1613											
4.400 Hexanal	000066-25-1	12.2766											6.50
5.044 Furfural	000098-01-1	3.2513	3.2513	4.6022	2.1693	0.2145							
6.357 2,3-Butanediol	000513-85-9					2.0972							
7.344 Phenol	000108-95-2	5.0516	5.0516		19.384	0.731							
7.564 Hexanoic acid, ethyl ester	000123-66-0	1.7061							9.2745		15.731	5.1674	4.100
9.000 Mequinol	000150-76-5										3.0604		
9.009 Phenol, 2-methoxy-	000090-05-1			17.7234		8.3265	3.662						
9.014 Hexane, 1,1-diethoxy-	003658-93-3	2.0454	34.663										
10.524 Octanoic acid, ethyl ester	000106-32-1										2.1189		
11.426 Benzaldehyde, 4-methoxy-	000123-11-5									1.9867			
11.810 Benzenemethanol, 4-methoxy-	000105-13-5							17.3623					
11.912 Nonanoic acid, ethyl ester	000123-29-5									1.1872	2.0285	6.0428	
12.210 Benzeneacetic acid, 4-methoxy-	000104-01-8							4.2895					
12.211 Benzeneacetic acid, 3-methoxy-	001798-09-0									54.0079			
13.355 Vanillin	000121-33-5	5.5067	15.725	26.3878	22.291	51.098	73.658	28.8712	11.996	3.805	9.9605	21.8258	9.165
17.793 Benzenesulfonamide, N-butyl-	003622-84-2					6.009							
19.780 Ethyl tridecanoate	028267-29-0	10.0113			21.093				19.038				
19.782 Decanoic acid, 2,4,6-trimethyl-, methyl ester	055955-72-1	2.4453	2.4453								8.296		
19.786 Undecanoic acid, ethyl ester	000627-90-7			11.3803								8.5269	
21.999 11.14-Eicosadienoic acid. methyl ester	002463-02-7	1.9499											

Table 4 Library search reports for the extracts using solid phase microextraction (PA fiber*)

PA = polyacrylate fiber. No other fibers were studied since Sostaric² et al. found the PA fiber to be the most efficient at extracting vanilling

Table 5 Library search reports for the extracts using liquid injections

	Extract #:		2	2	- 4		- 6	2			20	11	
RT	CAS	Areo Pct	Area Pct	Areo Pct	Area Pct	Area Pct	Area Pct	Area Pct					
7.8523-Propanone, 1-hydroxy-	9-60-911000	1.1241	1.1835	1.5217		1.4466	1.9396	1.7536	1.7344	1.6255	2.2047	2.3909	1.934
8.0771-Propanol, 3-ethoxy-	000111-35-3						0.2466						
8.7902-Chloroethanol	000107-07-3	1.8792	1.459										
9.708 Acetic sold	000064-19-7		1.8947	3.8513	3.5896	2.547	3.7475	3.0337	3.234	2.2888	3,6095	4.9391	4.364
11.2672,3-Butanediol	000513-85-9	1.3943	0.7126	0.4683	0.5586	0.4411	0.2545		0.5323	0.5676		0.2425	0.342
11.3662-Cyclopentene-1,4-dione	000930-60-9								0.2909	0.3094	0.5054	0.3301	
11.9661,2-Ethanediol	000107-21-1	1.3686	1.0229										
12.2352 Furanmethanol	000098-00-0		0.2847	0.47	0.4843				0.292			0.4868	0.637
13.5201,2-Cyclopentanedione	003009-40-0	0.944	0.4824	1.0443	1.0533	0.3511	0.5301		0.5339	0.394	0.6495	0.6818	0.790
14.474 Phenol, 2-methoxy-	000090-05-1	0.7523	3.7163	1.8511	2.6342	1.9088	1.507	1.1553	1.4559	1.8263	2.9044	1.9572	2.300
15.942Phenol	000108-95-2		0.6421	0.3902	0.4354	0.3714	0.3152	1.5841	1,2131	0.687	0.889	0.5094	0.504
16.7752-Propanone, 1,3-dihydroxy-	000096-26-4		1.3784	2.2006	1,7753	1.3075	0.2685	2.0160	1.7593	1.6661	1.635	2.7887	
16.960 Cyclobutanol	002919-23-5					0.468						0.6993	0.814
18.540 Gergenemethanol, 4-methoxy-	000105-13-5						0.1408		0.4313				
19.1642',4'-(Methylenediaxy)acetaphenone*	002162-29-6	57,7509		31.7905				22.0715		29.4619		22.9354	24.114
20.4122 Furancarboxaldehyde, 5-{hydroxymethyl}-	000067-47-0	0.6697	1.191	1.3861	0.9176	0.6158	0.8531	0.7512				0.6334	1.343
20.706 Phenol, 4-(ethoxymethyl)-	057726-26-8								3.7735			0.9299	0.497
20.972 vanilin	000121-33-5	19.4075	40.5392	40.9278	43.3660	50.9717	50.9831	27.9326	30.3029	29.3982	22,9281	36.955	30.613
23.885 Genzoic acid, 4-methoxy-	000100-09-4							0.3990					
24.303 Renzaldehyde, 4-hydroxy-	000123-08-0	3.6983		2.1686	2.1956		2.7586	2.3223	2.0486		2.7311	2.2088	2.714
28.961 Octaethylene glycol monododecyl ether	003055-98-9		0.7729	0.434	0.4968	0.9607	1	1.5517	0.6042			0.6079	1.740

Internal Standard used for quantitation of vanilling

Chemometric Analysis

Principal component analysis of data collected with headspace sampling indicated that the total variance captured with the first three principal components was 97.91%. However, this high percentage of variance captured did not appear to be related to the country of origin of the extract. Instead Figure 4 indicates that extracts clustered according to the year they were prepared.

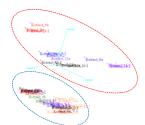


Figure 4 Principal component analysis of HS data (4 replicas per extract). Ellipsoids do not represent statistical information, they are drawn for visual

Vanillin content

A three point calibration curve was created using liquid injections. The vanillin content of the 12 extracts was obtained using 3',4'-(Methylenedioxy)acetophenone as internal standard. Results are shown in Table 6.

Table 6 Vanillin content obtained using liquid injection

Extract #	Vanillin (ppm)
1	724
2	1412
3	1624
4	1611
5	1964
6	2678
7	1071
8	996
9	643
10	735
11	1810
12	1001

Conclusions and future work

- Solid Phase Microextraction provided a simple and fast sampling technique that identified
- > Liquid injections required an extra step in the sample preparation (dilution with methanol) in order not to overload the chromatographic column.
- > Headspace sampling was the least sensitive. In some extracts only 4 compounds were identified with a good quality match.
- > The potential of discriminating extracts according to country of origin will be investigated using data collected with SPME sampling
- Future work includes addition of more extracts to this database plus analysis using liquid chromatography.